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Abstract 

Purpose: 
The goal for this project was to show proof-of-principle that chronic-pain phenotypes 

could be determined from the medical data collected by a large community specialist practice 
(Michigan Pain Consultants (MPC)), and that these phenotypes could be linked to treatments 
and outcomes. 
Scope: 

To accomplish this purpose, the MPC electronic medical record (EMR) was evaluated to 
determine if the various components were suitable for phenotype construction. This required an 
examination of the elements within the MPC progress notes, their routine patient 
questionnaires, and their practice management data. 
Methods: 

Natural language processing techniques were used to extract concepts from the progress 
notes. An ontology suitable for community chronic pain medicine was constructed and an 
exemplar-based approach to extract the concepts for each patient was developed. The findings 
were rendered into feature vectors for latent class analysis. The 130 questions of the MPC 
patient questionnaire were consolidated into a 14 biopsychosocial feature vectors using factor 
analysis. Proof-of-concept phenotypes were generated from the feature vectors with preliminary 
latent class analysis on approximately 10,000 patient records. 
Results: 

The following results are recapped: 
a) Data repository and annotation metrics. 
b) Natural language processing algorithm approach based on exemplars. 
c) Algorithm evaluation results. 
d) Patient medication extractions. 
e) Comorbidities identified in progress notes. 
f) Clustering of patients into proof-of-concept phenotype groups. 
g) Patient pain reporting veracity. 
h) Longitudinal data overview. 
i) Fuzzy Classification of Concepts Using Machine Learning. 

Future publications and work are outlined. 
Key  Words:

Chronic pain, Phenotypes, Natural language processing, Progress notes, Patient-reported 
outcomes 
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Purpose 

Specific Aims 
The overall goals for our project are to isolate person-in-chronic-pain phenotypes from the 

data collected by a large community specialist practice (Michigan Pain Consultants (MPC)), link 
them to treatments and outcomes, and to use these results to create a model that can serve as 
the basis for future construction of a clinical decision support engine capable of enhancing 
patient outcomes. The much narrower aims for this AHRQ R21 grant were to evaluate the data 
from the MPC electronic medical record (EMR) and determine if it can be used in patient 
phenotyping and, if so, to show proof-of-principle results for various analysis components 
needed to convert the data to phenotypes. The two aims are: 

1. Identify, extract, and organize data to support phenotype-intervention-
outcome model construction. This requires analysis of the structured and unstructured 
data from the MPC clinics, which is composed of administrative data, dictated and formatted 
progress notes, and regular patient reported outcomes captured by a questionnaire with over 
130 questions probing biopsychosocial patient attributes. A major component of this aim is to 
use natural language processing techniques to extract pertinent information from the progress 
note narratives so that it can be united with the structured data. 

2. Iteratively construct and evaluate pain phenotype-intervention-outcome 
models until optimized to available data. This aim involves various combinations of factor 
analysis, cluster analysis, and structural equation modeling to build the model(s) that will be 
predictive of the phenotype – best treatment – best outcome axis. 

Scope 

The scope of this project is captured in the milestone table from this R21 grant application, 
which is reproduced in Table 1 together with brief comments on status. The comments indicate 
the progress achieved at each stage and the alterations made as the project developed. 

When we created these milestones, we had great hope that this grant would be sufficient to 
create models capable of supporting clinical decision support tools. While we made great 
progress with Aim 1 (extracting data), the modeling (Aim 2) continues to remain a challenge 
because this grant was insufficient to extract all the phenotype features from the data (see 
Figure 1 for an overview), thus preventing us from generating the type of model we sought. We 
also now realize that we must expand our vision to create more comprehensive models that 
encompass longitudinal patient trajectories and longitudinal phenotypes. With that now in 
mind, the last milestone (iterative fine-tuning of models) is not be an appropriate endpoint. We 
now believe that this task must wait until the models can incorporate the time trajectories of 
patients undergoing the repetitive experiences of diagnosis, treatment, improvement, relapse, 
return to clinic, diagnosis, … and so on. 
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Table 1. Project milestones from grant application and status comments. 

Milestones Status Comments 

Aim 1: Identify, extract, and organize data to support phenotype-intervention-outcome model 
construction 

Assemble NLP pipelines We have designed and built an exemplar-based 
NLP pipeline 

Train pipeline components 
Our exemplar approach is ‘trained’ on human 
annotator-derived text instances linked to 
ontology classes 

Deploy linkage analyzer 
We have successfully implemented the linkages 
provided by the relationship exemplars to the 
output array for each document 

Catalog extracted contents 

We have generated ~450 Million algorithm-
produced annotations and have stored them in a 
combination of a nested file structure and 
various Python dictionaries that link patients to 
annotation features 

Aim 2: Iteratively construct and evaluate pain phenotype-intervention-outcome models until 
optimized to available data 

Outline initial phenotype model 

We have learned enough to realize that our 
phenotype model must eventually be based on 
longitudinal patient trajectories because chronic 
pain is managed, not cured. For this R21 grant 
we created the beginnings of a static phenotype, 
proof-of-principle model based on latent factor 
and latent class analyses. 

Utilize data to begin model-building 
We have published a factor analysis1 revealing 
potential phenotype factors from the PHA 
patient questionnaire. 

Compare analysis methods 
Global comparisons cannot be done yet. 
However extraction of each feature group was 
optimized by comparing methodologies for 
mapping to ontologies. 

Incorporate results of Aim 1 Pain, treatments, relief, drugs, comorbidities, 
and negation have been incorporated to date 

Iterative model refinement May not be a good use of time for static 
phenotypes. 
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Figure 1. Schematic overview of project goals spanning from each visit to each patient to all 
patients. The grant has allowed a proof of concept for several steps in this project. Those have 
been highlighted: Green indicates finished and orange indicates partially finished 

Methods and Results 

1. Reports on various project components 

a). Data metrics 

In the submission proposal for this grant, a table of metrics was presented showing the 
number annotations generated by human annotators on a stratified random sample of progress 
notes. That information is expanded here in Table 2 by showing more details on the number of 
NLP annotations generated by our analysis and the number of patients with multiple visits for 
the period under study, (2010 – June 2014). To summarize, approximately 19,000 patients, of 
the 113,000 on record, visit the clinics an average of five times per year. These patients are 
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predominantly middle age and above. Associated with these visits are coding data, progress 
notes dictations, plus patient-reported status and outcomes using ProCare’s Pain Health 
Assessment (PHA™) survey tool. The structured data is readily accessible to analysis, but to 
make complete use of the full data collection the contents of the progress note dictations require 
concept extraction and analysis using NLP technology, which is described in the next section. 
Initial NLP-generated annotations, as shown in the table, are approximately 450 million. These 
constitute a rich resource for further study. 

Table 2. Metrics of available MPC patient data. Each line constitutes its own topic. Quantity 
abbreviations: K º thousand; M º million. Values are approximate. 

Category Value 
Patients on record 113K 

Mean Age (sd) 58.6 
(17.5) 

Visits (2010-14) 442K 
Prog. Notes 288K 

Notes – Initial NLP 244K

PHA questionnaires 84K 
CPT codes 2.8M 

ICD9-CM 1.5M 

Females 67K 
Females 59.4 (18) 

10+ Visits† 30K 
10+ Notes† 10K 
Sentences 5.4M 

iPHA‡ 23K 
Avg per patient 31 

Avg per patient 17 

Males 46K 
Males 57.4 (16.6) 

100+ Visits† 1K 
30+ Notes† 800 
Algorithm 

Annotations 
450M 

cPHA‡ 61K 

† - patients with this number of visits or progress notes 
‡ - iPHA is intake PHA; cPHA is cumulative (follow-up)  PHA  

During the period 2015-2017, additional task-specific annotations were collected by 
student annotators, as mentioned in the 2nd annual report. Table 3 gives a summary view of all 
the human annotations collected with this project. 
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Table 3: Metrics of human-generated annotations. 

Metric  Value  Notes  

As of July, 2013 

Classes1 147,857 Number of mentions (instances ) in the text assigned 
to a node in the class hierarchy 

Linking Attributes2 136,292 Number of links assigned between class mentions 

Classes Used 80.2 (4.3) % Mean (sd) percentage of the 460 classes used during 
the annotation of the 500 documents by the four 
annotators 

Coverage 77.8 (8.7) % Mean (sd) percentage of the documents’ text 
assigned to an annotation class 

2015 

Cross-check 234,328 Evaluation of algorithm class assignments to 
Annotations sentences. 13,785 sentences evaluated on 500 fresh 

document. 

2016-17 

Progress note ~30,000 Twenty categories identified on random sets of 
content evaluation documents by three student annotators 

Longitudinal series ~32,000 Approximate number of evaluations of note content 
for approximately 2600 notes representing 
longitudinal series on 200 patients 

Confusion matrix ~13,300 TP, TN, FP, FN evaluations of various classes 
annotations assigned to sentences (297) identified as containing 

relief by the algorithm 
1.	 A class taxonomy structure was used. It contained 13 top classes with multiple branching sub-classes. A total 

of 460 final leaf classes comprised the hierarchy tree. (Simple examples would include: Drug name, Drug 
dose, Drug schedule, Pain intensity, Outcome pain relief.) 

2.	 Classes were linked with attributes selected from a list of 39 possibilites. (Examples include: has dose, has 
drug schedule, has quality, has effect, has target, has value, has location laterality) 

b). NLP algorithm 

As mentioned in earlier reports, we have diverted from our plans for natural language 
processing that were outlined in the grant application. We had anticipated using off-the-shelf 
components based on UIMA and cTAKES to create pipelines for document processing. It 
became clear early on that this was not the best approach. These tools are still being built by 
large communities of researchers and have architectures for continuous processing of 
documents generated by various medical workflows. Virtually all of the pipeline components 
would have needing training to MPC data and that would have required more time and money 
than was available. In virtually all implementations of these pipelines, the focus is on extracting 
specific concepts for specific needs. We needed a method that could broadly identify the 
concepts embodied by chronic pain patients and their treatments. Hence we built an ontology to 
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represent these concepts, annotated a sample of documents, and used an exemplar-based 
concept extraction algorithm to process the progress notes. 

The algorithm outline is shown in Figure 2 and depicted pictorially in Figure 3. To 
summarize this approach, we use annotation instances generated by human annotators from a 
random sample of notes to generate exemplars for matching to text regions of previously unseen 
documents (see Table 3). Two annotation collections were created. The first was to a low 
resolution class set. The second was to a high resolution ontology. In the second case, interclass 
relationships among classes were also captured. Analysis of unseen documents entailed 
extracting overlapping n-gram word segments and converting them to bag-of-words and bag-of-
bi-character constructs for comparison to similar constructs stored for all the annotation 
exemplars. The fuzzy alignment approach consisted of choosing the maximum Jaccard index 
scores among the comparisons and retrieving the class(es) associated with the optimal 
annotation exemplar. The results were collected into discourse-by-class arrays for each 
document with scores occupying the cells of the array. These are basically class maps of the 
document discourse. They form the bases for subsequent analyses. 

The algorithm is part of a manuscript for submission to the Data and Knowledge 
Engineering. As part of the basic aspects of the concept extraction method, we show in the 
manuscript the advantages of the bag-of-bi-character fuzzy alignment approach, both for its 
added benefits over bag-of-words and its increased speed over approximate string matching 
algorithms. We also show that the annotation collections were likely to be representative 
samples of the concepts in the documents, as determined by Zipf plot linearity and slope. We 
present the ROC curves for the method, which was requested by previous reviewers of a longer 
form of the manuscript submitted to the Journal of Biomedical Informatics. 

The ROC curve was generated by using the confusion matrix values (TP, TN, FP, and FN) 
in a 5x5 cross-validation on the 500 annotated notes and thresholds applied to the values of the 
output array on these documents. As the thresholds increase in value, the false positive rates 
decreased, followed by decreases in the true positive rates, sketching out a locus of 2-D 
histogram intensities that define the ROC. The mean values were fit with the beta distribution 
for each of the 25 cases in the 5x5 cross-validation. In Figure 4a, the ROC is calculated from 72 
parent classes in the chronic pain ontology, where classes related grammar and quantities were 
removed, and several child class trees were collapsed into one parent. The area under the ROC 
curve (AUC) when including all classes was 0.71 (not shown). With consolidation, the AUC 
improved to 0.90. 

Most of the progress notes from MPC’s EMR are constructed similarly and exhibit an 
expanded form of the general SOAP note (Subjective Objective Assessment Plan) although some 
variations among physicians occur routinely. We examined the ability of the exemplar algorithm 
to assign the top level class groups to the appropriate sections of the progress notes. The 
individual word usage through the text of the notes is not sufficiently unique to reliably 
distinguish the conceptually different regions (not shown). Rather, it requires phrases to best 
align regions with classes. In Figure 4b, the regions of the document dominated by the various 
top level classes of the taxonomy are shown (vertical scale). The solid circles are mean locations 
identified by the annotators, while the open triangles are those predicted by the algorithm. The 
error bars are the standard deviations around the peak locations for the occurrences of classes 
within the document. There are no significant differences between the human annotator 
identified positons in the document and those obtained by the algorithm. This provided another 
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test that the algorithm is extracting concepts from the progress notes suitable for further 
analysis. 

Figure 2. Outline of analysis steps 

Analysis  Algorithms  

1. Basic Algorithm: Fuzzy matching 
1.1 Read in document
 
1.2 Separate into sentences with NLTK and convert to all lower case
 
1.3 For each sentence:
 
1.3.1	 Remove punctuation, determiners, and “dr”, “ms”, “mr”, “mrs”
 

leave all other stop words and symbols
 
1.3.2	 Extract overlapping word n-grams of length 1,2,3,4,5 for each sentence
 

Convert each n-gram to bag of words (BoW)
 
1.3.3	 Remove spaces from n-grams and convert to bag of overlapping bi-characters (BoB)
 
1.4 For each n-gram BoW and BoB
 
1.4.1	 Calculate Jaccard Index (Eqn 1) similarity to each dictionary exemplar BoW and BoB
 

using only those stored exemplars with sizes n to 4n in word length
 
1.4.2	 Select maximum Jaccard Index between the two bag types for an exemplar
 
1.4.3	 Sort Jaccard index values across all dictionary exemplars
 
1.4.4	 Capture the n top Jaccard index values and store with n-gram and scores; where,
 

score is given by Equation 1,
 
n is the same as n-gram length, and
 
results are linked to word positions in document
 

1.5 Store all classes and scores linked to each word in the sentence
 

2. Post-processing A: Create discourse (word stream) by class output array for each document 
2.1 Rows are identified by sentence number, word number in document, and word string
 
2.2 Columns are identified by class
 
2.3	 Cells for each [word, class] intersection consist of the sum of all scores for that word
 

derived for that class from all the n-grams containing that word, (Eqn 3)
 

3. Post-processing B: Fit normal distributions to regions of class vectors in output array 
3.1 From each document’s output array:
 
3.1.1	 For each sentence:
 
3.1.1.1	 For each class vector
 
3.1.1.2 Smooth twice with 3-point binomial kernel
 
3.1.1.3 Locate peaks after smoothing
 
3.1.1.4 Use number of peaks as number of normal distributions needed
 
3.1.1.5 Fit smoothed class vector to sum of normal distributions
 
3.1.1.6	 Store means, standard deviations, and amplitudes for all identified peaks
 

Store in a nested dictionary by document, sentence, and class.
 

4. Post-processing C: Use predicted inter-class relationships fine-tune output array scores 
4.1 For each sentence. For each class.
 
4.2 Get mean locations of peak scores from normal fits (above)
 
4.3 Examine all class(a)-slot-class(b) possibilities documented in human annotation set
 
4.3.1	 If class(b) also exists in sentence, determine distance to class(a)
 
4.3.2	 Compare to distances documented in human annotation set
 
4.3.3	 Weight new score by differences in distances and frequency of class-slot-class (Eqn 4)
 

Page	 9 of 20
 



	 	 	
	

 

	

               

    

	
	 	 	

Sample 
Corpus 

Exemplar 
Collection Assign	 ontology classes to text	 regions 

5-gram 4-gram 3-gram 2-gram 1-gram
1

W1
1

W2
1

W3
1

W4
1

W5
1

W6
1

W7
1

W8
1

Match	 exemplars to	 n-grams 

Document	 in W9
1

Evaluation W10
1

Corpus
 Evaluate each sentence separately Word-by-Class Map 

Se
nt
en

ce
 

 
 

          
          

 

 

              
             

           
          

        

Figure 3. Flow diagram of the steps described in the basic algorithm and the first post-
processing stage described in Methods and in Figure 1. This highlights that concept extraction 
from progress notes is linked to a chronic pain ontology. 

Figure 4. a) Results of 5x5 cross-validation for 72 class groupings. Mean (solid circles) and 
95% confidence intervals for beta distribution fits to the 2D histograms. b) The positional 
distribution of score peaks for several top parent classes of the ontology. Human annotated 
documents (solid circles) and the algorithm output (open triangles) are shown for the same 500 
document sample. Each document is normalized to a word length of 1.0 
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c). Algorithm results 

In the 2nd annual report, we described two use cases to demonstrate the utility of the 
exemplar-based, fuzzy alignment method using either the low resolution classes or the high 
resolution ontology. In both cases, regions of the progress notes were aligned with concepts 
embodied in the class structure. Using the low resolution classes, we showed that we can capture 
the canonical structure of the progress notes. Using the high resolution ontology, we extracted 
pain relief, treatment modality, and polarity. 

From the high resolution case some conclusions were readily apparent. Medications were 
generally not as effective as steroid injections or surgery. Surgery, however, had a higher 
percentage of negative comments in the patient reported outcomes than steroid injections. The 
highest percentage of negative comments occurred for medications, which appeared to indicate 
pain medications were not as effective as desired. This supports preliminary observations 
extracted from the PHA by Dr. Mark Gostine of MPC regarding the effectiveness of opioids2. 

We also showed that the relief estimates extracted from the progress notes show the same 
distribution as the answers to a single question of the PHA which asks the percentage of relief 
experienced by the patient. This distribution has the same skewed shape as the distributions for 
steroid injections and surgery. 

In another exploration of the results, we sampled those documents associated with clinic 
visits where patients also filled out the pain health assessment (PHA) questionnaire (38,278 
visits) (See Juckett et al.1 for background on this PRO instrument.). The algorithm predicted 
that 90.6% of the documents contained at least one sentence addressing some degree of pain 
relief. Examining a random draw of 100 notes from this group, two human annotators identified 
91 documents with relief statements. The algorithm predicted only a slightly different subset of 
documents. The recall, precision, and F1 scores between human annotators and the algorithm 
was 0.90, 0.93, and 0.91 respectively. The kappa score for inter-annotator agreement was 0.79, 
although we consider the kappa value a weak indicator of agreement because of the imbalance 
between true positives and false positives, as well as the large number of true negatives in the 
analysis leads to unrealistic values for agreement by chance, as discussed by Feinstein & 
Cicchetti, 19903. 

For the same sample of 100 documents, 397 sentences were identified as possibly 
containing relief concepts. Within these 397 sentences, the intervention classes of injections, 
prescription drugs, and surgeries were also labeled by the algorithm along with polarity and 
scope. Human annotators labeled the relief, interventions, and polarity assignments with either 
true positive (TP) or false positive (FP) to enable calculation of precision. We did not attempt to 
evaluate recall because this was a sample chosen to have relief statements and, therefore, 
already biased toward high recall. Since relief is often associated with treatments, the classes 
related to injections, drugs, and surgeries were also biased to high recall. The precision values 
are shown Table 4, and were calculated using S Ψ TP/(S Ψ TP+S Ψ FP), where Ψ represents the 
scores at the word-x-class intersection of the output array (see Figures 1 & 3). The Ψ TP and Ψ TP 

values were the maximal Ψ values assigned to the phrases in question, while the assignment to 
either TP or FP was determined by the annotators. 
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 Relief 0.83 (0.05)a

Injections   0.93 (0.05)  

 Drugs  0.93 (0.05)  

Surgeries    0.72 (0.15) 

Polarity   0.97b 

 

           
 

         
            

             
          

              
            

      
    

        
          

                 
        

     
             

               
             
           

             
          

        
 

      
            

        
         

               
         

             

Table 4. Precision estimates for algorithmic identification of various concepts in a sample of 
397 sentences in 100 documents, as validated by human annotators. 

a).  Standard  deviation (sd)  was  a  measure  of  the  variation between annotators.  
b). Polarity was sufficiently robust that only one annotator was used to evaluate 

d). Medication used by patients and assignments to categories. 
Named entity recognition of medications in the progress notes and prescriptions issued by 

MPC revealed 663,585 drug mentions within 77,900 progress notes and the associated visit 
prescription records of the EMR. These included over-the-counter drugs, those prescribed by 
other providers, as well those prescribed by MPC. They fell into approximately 769 specific drug 
types that could be consolidated into 23 general categories given by: Analgesic non-opioid; 
analgesic opioid; anti-anxiety; anti-depressant; anti-histamine; anti-hypertensive; anti-
infective; anti-lipemic; anti-neoplastic; anti-platelet; anti-psychotic; anti-seizure; 
benzodiazepine; biologic; bronchodilator; diuretic; gastrointestinal drug; hormone; muscle 
relaxant; nsaid; sedative; steroid cortico; supplement. Preliminary factor analysis to determine 
which drugs tended to be used together yielded evidence for four factors that can be described as 
direct pain relievers, psychoactive-modulators, metabolic modulators, and disease treatments 
(e.g., infections and cancer). 

To extract these drug instances two ontologies were used; RXNORM and SNOMED that 
were accessed through the web services at the National Library of Medicine (NLM) and the 
National Center for Biological Ontologies (NCBO), respectively. Using both of these it was 
possible to convert brand names to generic names and then extract the ontology trees from 
SNOMED for the generic drugs. One of the human annotators on our project had previously 
catalogued the MPC prescription drugs into the 23 categories given above. This was retained 
and the SNOMED upper level classes were mapped to these categories. 

e). Comorbidities identified in progress notes 
Named entity recognition of diseases and symptoms within the progress notes was 

undertaken to create comorbidity feature vectors (see Fig. 1). There were 61 classes in our 
chronic pain ontology that represented diseases and symptoms. Each document’s output array 
was examined for words and phrases containing scores in these classes. Those, in turn, were 
cross-checked against the Human Disease Ontology and the Symptom Ontology from the NCBO. 
A total of 443,673 instances of symptoms and diseases were identified within 77,900 progress 
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notes. Of these, 87,287 were negated and 356,386 were affirmed. The instances represented 
1,454 unique words or phrases, representing disease names or symptoms that were identified as 
labels or exact synonyms in either the disease or symptom ontology. These were consolidated 
into 545 classes represented by various child classes of these two ontologies. These can be 
collapsed into approximately 39 parent classes, the actual number of which depends on desired 
granularity. Factor analysis will be required to determine which diseases and symptoms 
typically cluster together. This will generate a comorbidity feature set which will part of the 
latent class analysis to cluster patients. 

f). Clustering patients into proof-of-concept phenotype groups 

Latent class analysis (mixture modeling) of a preliminary set of patient attributes (or 
features) has revealed interesting patient cluster characteristics. Patient attributes were 
obtained from progress notes and PHA questionnaires that were generated on the same patient 
visit. For our methods paper, we examined a use case to determine if we could extract 
treatments and relief that occurred in a single sentence of a progress note. The technique was 
highly successful, allowing us to incorporate these patient attributes in the latent class analysis 
together with the PHA biopsychosocial factors derived previously1. To simplify the presentation 
of the findings, we use L, M, H to represent Low, Medium, and High levels, plus some 
intermediated states, for the conditions or responses. The results shown below are for 9 latent 
classes (clusters), which is a reasonable representation of this limited set of features. It 
demonstrates that various unique combinations of features can be identified in reasonable 
fractions of the population. As we expand on these feature vectors (patient attributes) and 
introduce latent class analysis with structural equation models, we should be in good position to 
make predictions for various patient phenotypes. 

When ICD-9CM codes were introduced in preliminary latent class analysis, those patients 
clustering in the top four treatment groups of Table 4 were about 4 to 1 more likely to suffer 
from non-spinal pain whereas those in the bottom 5 clusters were at least 2 to 1 more likely to 
suffer from spinal pain. This indicates that introducing practice management codes into the 
latent class analysis will be beneficial for phenotyping. Much more work on disease 
identification must be performed, particularly with the addition of co-morbidities that are being 
derived from the progress notes (see above). 
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Table 5. Preliminary results of latent class analysis with a subset of feature vectors consolidated 
into the first five columns and denoted by the top row headings. 

Treatments Depression ADL 
Quality 

Biopsycho-
social 

Severity 
Relief 

% 
Population 

Prediction 
Prob 

Drug M M M M 6.5 0.93 

Surgery M M M M 5.1 0.94 

Drug + 
Surgery L H L H 4.1 0.93 

Drug + 
Surgery 

Injections 
H L H L 11.4 

0.88 

Injections L H L H 12.1 0.91 

Injections M H M M 14.2 0.77 

Injections L M M MH 13.3 0.80 

Injections MH ML MH M 20.9 0.81 

Injections M L MH M 12.4 0.80 

g). Patient pain reporting veracity 

As with most exploratory endeavors, we have made some interesting ancillary 
observations. In particular, we detected pain reporting differences in sub-populations of 
patients. The first manuscript for this (an accepted AMIA meeting paper4) was submitted as an 
attachment in the 8th quarterly report for this grant. While we do not fully understand the 
determinants causing the variation in patient veracity, we anticipate that these patient 
differences will become part of phenotypes that we construct. It is important to note that this 
phenomenon would not have been detected without having both patient reports of status and 
outcomes together with physician reports detailed in progress notes. Furthermore, for this 
patient population, that was only possible because of the remarkable data repository of the 
Michigan Pain Consultants (MPC) and ProCare Systems, and their commitment to partner with 
a University to use this data for research. 
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Pain Values: Biopsychosocial Differences 

Nonsync 

Sync 

Progress notes VS Questionnaire 

In the analysis of the progress notes, pain numbers were identified in progress notes with 
F1 values of 0.98. Comparisons to pain reported in the PHA for the same clinical visit (Figure 5) 
revealed a discrepancy in some patients’ veracity (nonsync group). Some patients reported pain 
levels to doctors (open circles, left figure) that were higher than those reported on the survey 
tool administered at the beginning of the same visit. Those patient also exhibited higher severity 
in other health factors (right figure). Therefore, the pain numbers reported to physicians were 
more aligned with true health status than pain values reported on the questionnaire in the 
waiting room. This finding was true for both sexes and provides strong support for the 
importance of physician recorded information, which for this important data set resides within 
the progress notes. 

Figure  5. Differences  between  pain  recorded  in  progress  notes  and  questionnaires.  (left) Identifying  
sync   and n onsync  populations.  right) Biopsychosocial  differences  between  sync  and  nonsync  patients.  

h). Longitudinal data 

Evaluation of some of the characteristics of the longitudinal data available for most 
patients is now underway. In Table 6, we show results of content, as determined by human 
annotators, for a random sample of patients who had 6 to 9 progress notes on record. Important 
content is present within these longitudinally connected notes, particularly the results of last 
treatment, medications, and comments on patient behavior and affect. In Figure 6, we show that 
the thousands of patients with multiple progress fall into two distributions; one decreasing 
exponentially over time, and the other centered near 18-20 visits. A sample of the latter group 
reveals progress notes with similar content. The reason for this subgroup appears to be their 
disease severity. Since the time window for the notes is 2010-2014, that implies that more notes 
indicates visits occurring more often. That goes hand-in-hand with the need for more pain 
management. This subpopulation will be an important study cohort for severe chronic pain. 

Reaching stable pain management takes time, as shown in Figure 7. This is a compilation 
of thousands of overlapping trajectories of patient reported relief with different start and stop 
points. Those that had been with the MPC practice for many years were already at steady state. 
Those new to the practice during our 2010-2014 study window defined the transition within the 
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Note  content  Num.  of  
notes  

% 
Patients

Reason  for  visit  296  87%  
Status  between visits  302 92%  
Results  of  last  treatment  370 93%
Medication  usage 291  87%  
Treatment  given  382  92%
Other  recommendations 131  71%
Comments  on  behavior 268  97%

first 1-2 years from starting pain to steady state pain. It should be noted that an improvement of 
1-2 units on the 11-point Likert scale is typical for pain management services5–7. This also 
demonstrates that successful pain management takes more than one visit and more than a few 
months. 

There are multiple types of trajectories that may exist for patients and these are likely to be 
strongly tied to their biopsychosocial characteristics. We anticipate that patients: can exhibit 
temporary relief followed by relapse; can exhibit no relief after many visits; or, can oscillate 
between high pain and treatment-induced low pain. These trajectories will be important to 
document and understand. 

Table 6. Annotator analysis of 76 randomly drawn 
patients with 6-9 progress notes on file. 

Figure 6. Patient counts 
versus number of notes on 
record. Two subpopulations 
exist; short-term patients, and 
long-term patients. 
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Figure 7. Compilation of longitudinal trends in patient response to the relief question in the 
patient-reported outcomes PHA questionnaire. The PHA was active for 4 years in the data 
analyzed under this grant, however many had been treated by MPC for several years. The full 
relief scale spans 0-10, representing 0% to 100% relief. Only a portion is shown for clarity. 

i). Fuzzy Classification of Concepts Using Machine Learning 

We have also been investigating the use of machine learning techniques for the 
classification of concepts related to pain management. It is anticipated that these methods can 
be used to complement the exemplar-based methods for annotation and extraction of progress 
note concepts important for the construction of patient phenotypes. There are several challenges 
that are faced when attempting to accurately classify concept phrases, regardless of 
methodology. We briefly describe a few challenges and the approaches we are taking in this still 
ongoing research. 

First, concept-containing phrases can vary in length substantially and both the words and 
word sequence are important for phrase understanding. Therefore, it is desirable to retain both 
when encoding a phrase for classification. To address this, we encoded phrases as sequences of 
normalized difference semantic similarity indexes that represent each word as an index value, 
normalized to the range [-1.0,1.0], that captures the frequency with which a word appears within 
annotations for a specific concept. To our knowledge, this encoding technique has not been used 
for natural language classification tasks, although normalized difference indexes have been used 
for other applications8,9. These variable length index sequences were then used for training 
recurrent neural networks (RNN)10,11 to create concept classifiers. An iterative, random 
sampling technique was used for RNN training with good results and reduced training time for 
large sets of phrases. (Space limitations prevent us from providing a full description of this 
methodology.) 

Second, concepts are often embedded within or overlap other concept phrases. Thus, a 
phrase can have multiple class assignments with some likelihood. A classifier that can only 
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classify a phrase into one class may choose a class that is different from one assigned by a 
human annotator. However, when a classifier can chose alternate classes, it may be able to 
capture the overlapping concepts with high likelihood. To help understand the likelihood of the 
classifier’s class assignment, RNN output was calibrated12–14 such that it can be treated as a 
class membership likelihood. These likelihoods can then be used to better understand when 
classes overlap and when assignment to multiple classes is acceptable. As such, a more 
complete understanding of class membership is obtained that can be used to more accurately 
calculate classifier performance statistics. Moreover, the use of membership likelihoods enables 
a better understanding of concept overlap and relationship to other concepts that may provide 
useful insight for constructing patient phenotypes. 

Third, classification of natural language concepts is an open set problem15,16. There are 
potentially an infinite number of concepts conveyed in written language. On the other hand, 
classifier training only occurs on a finite set of examples and a finite set of classes. If a phrase 
optimally belongs to a class not used in training then the classifier will inappropriately assign it 
to one of the classes used in training. These misclassifications will typically be considered false 
positives when computing classification statistics such as specificity or precision. We have 
studied this problem by removing a random set of classes during training and examining the 
false positive ‘crosstalk’ that occurs during classifier testing using all classes. We can show that 
likelihood thresholds can be defined to help recognize and/or remove phrases for concepts that 
were unknown during classifier training. 

In summary, we have been investigating solutions to three challenges that impede accurate 
classification of concept-containing phrases. By overcoming these challenges we hope to be able 
to better capture the syntactic and semantic structure and relationships existing between 
concepts found within clinical notes and, in general, written language. As such, the classification 
of phrases can be better automated and enable improved processing and analysis of large 
repositories of clinical notes, reducing the level of manual annotation required. Furthermore, it 
is expected that the products of automated processing will expand our capacity to construct a 
more comprehensive set of patient phenotypes that can help better understand the process of 
managing patient pain. 

2. Recap 
We have endeavored to use this R21 funding to further our project to create phenotypes for 

people in chronic pain. Through multiple initiatives, we have made great progress extracting 
and uniting both the patients’ and physicians’ perspectives to begin understanding the 
biopsychosocial components that are keys to these phenotypes. This proof-of-concept, 
exploratory work will be critical to our future success. 

We now have a viable NLP approach that should yield extensive rewards once the bulk of 
the progress note concepts are extracted and analyzed from the discourse-by-class arrays. We 
see a path forward with latent factor, latent class, and structural equation modeling, especially 
when applied to longitudinal data. While the longitudinal analyses and modeling cannot be done 
with this funding, we believe the results generated by this R21 will enable future funding to 
complete the modeling. 

When we have successful models in hand, we will then move toward our ultimate goals of 
creating clinical decision support tools for the primary care setting. With the opioid catastrophe 
gripping medical practice, we need all the tools possible to help primary care physicians make 
good choices for their patients. 
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3. Probable additional publications generated by work done under this grant 
The large methods paper that was attached to the Quarterly reports has been difficult to 

publish due to its complexity. This is being split into two pieces. The first will concentrate on the 
algorithm that generates the output array (see Figure 3 above). The relief use-case will become 
part of a second manuscript that expands on the concordances of the patient-reported relief 
outcomes and those in the progress notes. These will be linked to treatments. This will be 
followed with a paper on the static phenotypes generated with latent class analysis. These 
preliminary phenotypes will be an expansion of the work that generated Table 5 by adding more 
patient feature vectors from comorbidities, prescription drugs and the explicit incorporation of 
the ICD-9 codes. This work is well underway since the end of the no-cost extension year. We also 
hope to follow up on the pain reporting veracity study presented at AMIA. 
4. Goals for future work made possible by this AHRQ grant 

Our fundamental hypothesis is that evidence-based medicine can be, and should be, driven 
by data from daily practice in such fields as chronic pain medicine because the long-term 
associations between physician and patient are an integral part of patient response to therapy. 
The goal of this R21 project was to evaluate evidence relating to that hypothesis. To accomplish 
this required sufficiently analyzing both perspectives and assembling the results into prototype 
phenotypes that can provide the basis for future work. To reach our goals for the overall project, 
we will need to accomplish several additional steps – all made possible by the foundation 
created by this R21, proof-of-concept grant: 

•	 While we have created methodologies to extract Named Entity Recognition recovery for 
drugs and diseases to create features for each patient, additional extractions must occur. 
These are all made much easier by the pre-processing of the progress notes into the 
word-by-class arrays. 

•	 While we have performed latent class analysis on the factors derived from the PHA 
questionnaire and some of the extracted factors from the progress notes, we must finish 
the extraction of features and their consolidated factors to generate the most 
comprehensive patient clusters (phenotypes) that the data supports. 

•	 From these phenotypes, we will need to design prototype Structural Models and 
evaluate them with Structural Equation Modeling approaches. This will yield early 
indications if Structural Models can capture the complexities of the patient phenotypes 
when combined with treatments and outcomes. We must also explore machine learning 
alternatives to the structural models. Both can generate knowledge kernels that can be 
used in clinical decision support engines to aid physicians in choosing the best 
treatments for their chronic pain patients. 
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